Convergence of Paths for Perturbed Maximal Monotone Mappings in Hilbert Spaces
نویسندگان
چکیده
Let H be a Hilbert space and C a nonempty closed convex subset of H. Let A : C → H be a maximal monotone mapping and f : C → C a bounded demicontinuous strong pseudocontraction. Let {xt} be the unique solution to the equation f x x tAx. Then{xt} is bounded if and only if {xt} converges strongly to a zero point of A as t → ∞ which is the unique solution in A−1 0 , where A−1 0 denotes the zero set of A, to the following variational inequality 〈f p − p, y − p〉 ≤ 0, for all y ∈ A−1 0 .
منابع مشابه
A SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS
We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملA strong convergence theorem for solutions of zero point problems and fixed point problems
Zero point problems of the sum of two monotone mappings and fixed point problems of a strictly pseudocontractive mapping are investigated. A strong convergence theorem for the common solutions of the problems is established in the framework of Hilbert spaces.
متن کاملConvergence of a proximal point algorithm for maximal monotone operators in Hilbert spaces
* Correspondence: hbshigh@yeah. net College of Science, Hebei University of Engineering, Handan 056038, China Full list of author information is available at the end of the article Abstract In this article, we consider the proximal point algorithm for the problem of approximating zeros of maximal monotone mappings. Strong convergence theorems for zero points of maximal monotone mappings are est...
متن کاملGraph-distance Convergence and Uniform Local Boundedness of Monotone Mappings
In this article we study graph-distance convergence of monotone operators. First, we prove a property that has been an open problem up to now: the limit of a sequence of graph-distance convergent maximal monotone operators in a Hilbert space is a maximal monotone operator. Next, we show that a sequence of maximal monotone operators converging in the same sense in a reflexive Banach space is uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011